Unit (s)	Multiple	Symb ol	Definition	Comparative examples \& common units
10^{-44}	1 Planck time	t_{p}	The time required to travel one Planck length at the speed of light (c)	$10^{-20} y s=10^{-44}$ s: One Planck time $t_{p}=\quad \approx 5.4 \times 10^{-44} \mathrm{~s}^{[2]} \mathrm{s}$ the briefest physically meaningful span of time. It is the unit of time in the natural units system known as Planck units.
10^{-24}	1 yoctosecond	ys ${ }^{[3]}$	Yoctosecond, (yocto+ second), is one septillionth of a second	0.3 ys: mean life of the W and Z bosons. ${ }^{[4 /[5] \text { la }]}$ 0.5 ys: time for top quark decay, according to the Standard Model. 1 ys: time taken for a quark to emit a gluon. 23 ys: half-life of ${ }^{7} \mathrm{H}$.
10^{-21}	1 zeptosecond	zs	Zeptosecond, (zepto+ second), is one sextillionth of one second	7 zs : half-life of helium-9's outer neutron in the second nuclear halo. 17 zs : approximate period of electromagnetic radiation at the boundary between gamma rays and X-rays. 300 zs : approximate typical cycle time of X-rays, on the boundary between hard and soft X-rays. 500 zs : current resolution of tools used to measure speed of chemical bonding ${ }^{[6]}$ 850 zs :The time it takes the electron to change its quantum state from the very constricted, bound state around the atom to a free state, ${ }^{[7]}$ which is currently the quickest time ever observed.

10^{-18}	1 attosecond	as	One quintillionth of one second	12 attoseconds: best timing control of laser pulses. ${ }^{[8]}$
10^{-15}	1 femtosecond	fs	One quadrillionth of one second	1 fs: Cycle time for 300 nanometre light; ultraviolet light; light travels 0.3 micrometres ($\mu \mathrm{m}$). 140 fs: Electrons have localized onto individual bromine atoms $6 \AA$ apart after laser dissociation of $\mathrm{Br}_{2}{ }^{[9]}$
10^{-12}	1 picosecond	ps	One trillionth of one second	1 ps: half-life of a bottom quark; light travels 0.3 millimeters (mm) 1 ps : lifetime of a transition state 4 ps : Time to execute one machine cycle by an IBM Silicon-Germanium transistor
10^{-9}	1 nanosecond	ns	One billionth of one second	1 ns: Time to execute one machine cycle by a 1 GHz microprocessor 1 ns: Light travels 30 centimetres (12 in)
10^{-6}	1 microsecond	$\mu \mathrm{S}$	One millionth of one second	$1 \mu \mathbf{s}$: Time to execute one machine cycle by an Intel 80186 microprocessor 4-16 $\mu \mathrm{s}$: Time to execute one machine cycle by a 1960s minicomputer

10^{-3}	1 millisecond	ms	One thousandth of one second	1 ms : time for a neuron in human brain to fire one impulse and return to rest ${ }^{[10]}$ 4-8 ms: typical seek time for a computer hard disk
10^{-2}	1 centisecond	CS	One hundredth of one second	18-300 ms (=0.02-0.3 s): Human reflex response to visual stimuli 20 ms : cycle time for European 50 Hz AC electricity
10^{-1}	1 decisecond	ds	One tenth of a second	100-400 ms (=0.1-0.4 s): Blink of an eye ${ }^{[11]}$ 150 ms : recommended maximum time delay for telephone service 185 ms : the duration of a full rotation of the main rotor on Bell 205, 212 and 412 helicopters (normal rotor speed is 324 RPM)
10^{0}	1 second	S	The duration of 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom.	$\mathbf{1 s :} 9,192,631,770$ periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium-133 atom. ${ }^{112}$ 6 s: time it takes for a human to breathe
10^{1}	1 decasecond	das	Ten seconds	19.54 s : Half-life of Carbon-10 40 s: Time until cyanide starts acting 60 s : 1 minute
10^{2}	1 hectosecond	hs	One hundred seconds	494 s: Time it takes for light to reach the sun 600 s : Half-life of Neutronium

10^{3}	1 kilosecond (16.7 minutes)	ks	One thousand seconds	3.6 ks: 3600 s or 1 hour 86.4 ks: 86400 s or 1 day 604.8 ks: 1 week
10^{6}	1 megasecond (11.6 days)	Ms	One million seconds	2.6 Ms: approximately 1 month 31.6 Ms : approximately 1 year $\approx 10^{7.50} \mathrm{~s}$
10^{9}	1 gigasecond (3.2 decades)	Gs	One billion seconds	2.1 Gs: average human life expectancy at birth (2011 estimate) ${ }^{[13]}$ 3.16 Gs: approximately 1 century 31.6 Gs: approximately 1 millennium
10^{12}	1 terasecond (32 Millenniums)	Ts	One trillion seconds	6 Ts: Time since the appearance of Homo sapiens (approximately) 80 Ts: Time it takes for light to travel from the Andromeda Galaxy to the Milky Way. ${ }^{[14]}$ 160-220 Ts: Time since the divergence of the human and chimpanzee lineages. ${ }^{[15]}$
10^{15}	1 petasecond (32 thousand Millen niums)	Ps	One quadrillion seconds	2.1 Ps: (66 million years) Time elapsed since the CretaceousPaleogene extinction event, during which all nonavian dinosaurs became extinct. ${ }^{[16]}$ 7.1-7.9 Ps: 1 galactic year (225-250 million years) ${ }^{[17]}$ 143 Ps: the age of the Earth ${ }^{[18 /[19][20]}$ 144 Ps: the approximate age of the Solar system ${ }^{[21]}$ and the Sun. ${ }^{[22]}$ 430 Ps : the approximate age of the Universe 440 Ps: the half-life of thorium 232

10^{18}	1 exasecond $(32$ million Millenniu ms)	Es	One quintillion seconds	312 Es: Estimated lifespan of a 0.1 solar mass red dwarf star.
10^{21}	1 zettasecond $(32$ billion Millenniu ms)	Zs	One sextillion seconds	3 Zs: Estimated duration of Stelliferous Era.
10^{24}	1 yottasecond $(32$ trillion Millenniu ms)	Ys	One septillion seconds	1.6416 Ys: Estimated half- life of the meta- stable ${ }^{209}{ }_{83}$ Bi radioactive isotope. 6.616×10^{50} Ys: Time required for a 1 solar mass black hole to evaporate completely due to Hawking radiation, if nothing more falls in.

